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Abstract: SRAM-based FPGA(Field Programmable Logic Arrays) requires external memory since its
internal memory gets erased when power is cut off. The process of transmitting the circuit netlist in
bitstream from external memory during power-up in FPGA is vulnerable to malicious attacks such
as bitstream theft and tampering. Previous FPGA reverse-engineering methods focus on FPGAs,
supported by ISE (ISE Design Suite). This is because ISE provides XDLRC (Xilinx Design Language
Routing Configurable logic) and XDL (Xilinx Design language) files, which are essential for reverse
engineering. However, Vivado Design Suite (Vivado) does not offer those files, making it impossible
to extend the coverage of reverse engineering to the FPGAs supported by Vivado. In this paper,
we propose a method to generate XDLRC and XDL through Vivado. According to experimental
results, the XDLRC and XDL generated through Vivado, respectively, match 99% and 75% with
those generated in ISE for Artix-7 100T. As a result, this paper has expanded the scope of reverse
engineering from being mainly focused on ISE to now also include Vivado. It is important to note that
this paper does not encourage bitstream attacks through reverse engineering but rather highlights
the risk associated with malicious attacks and emphasizes the importance of security.

Keywords: reverse engineering; Xilinx; Vivado design suite; ISE design suite; Xilinx design
language file

1. Introduction

SRAM-based FPGAs, along with the Flash-based FPGA (Field Programmable Logic
Array) and the Antifuse-based FPGA, play a significant role in various applications, such as
signal processing, communication systems, image processing, control systems, encryption,
and security [1]. Notably, AMD Xilinx and Intel Altera FPGAs demonstrate the highest
market share in the SRAM-based FPGA industry [2]. FPGA chip manufacturers typically
provide EDA tools to support circuit synthesis and implementation on FPGA chips, with
Xilinx offering two such tools: ISE (ISE Design Suite) for low-power, low-end FPGAs [3],
and Vivado (Vivado Design Suite) for the latest high-end FPGAs [4]. Specifically, ISE
supports older FPGA series up to 7-series and some low-end 7-series FPGAs [3], while
Vivado supports all 7-series and subsequent state-of-the-art FPGAs [4]. Table 1 summarizes
the FPGA-specific support Design Suite for each Xilinx FPGA, where Virtex and Kintex
series FPGAs generally have larger chip sizes and are fabricated using more advanced
processes compared to Spartan and Artix series FPGAs [5].

Through the diverse FPGA chip portfolio provided by FPGA manufacturers and the
stability of EDA tools, FPGA applications have expanded significantly. However, SRAM-
based FPGAs have a critical drawback, which is that they require external memory since
their internal memory gets erased when power is cut off [6]. The process of transmitting
the netlist in bitstream format from external memory during power-up in FPGA systems
makes it vulnerable to malicious attacks like bitstream theft and tampering, as shown in
Figure 1 [7–9]. The complete extraction of the bitstream enables the potential for a cloning
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attack, and tampering with the hardware results in malfunctions, leading to potential
damage. Additionally, intelligent reverse engineering [10–21] can be utilized to analyze the
design of the netlist. When a circuit is attacked, the circuit does not behave as intended,
causing serious problems. In the case of reverse engineering, all circuit information is
exposed to the attacker, causing serious problems with circuit security.

Table 1. Design Suites available for each FPGA series.

Family Series ISE Vivado

Spartan
3 O X
6 O X
7 X O

Virtex

5 O X
6 O X
7 ∆ O

UltraScale X O
UltraScale+ X O

Artix
7 O O

UltraScale+ X O

Kintex
7 O O

UltraScale X O
UltraScale+ X O
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The previous FPGA reverse-engineering tools primarily focus on FPGAs supported
by ISE, as shown in Table 1. The FPGAs that have been targeted by reverse engineering are
mostly devices in the Spartan-3 series and Virtex-5 series in previous research [10–14]. This
is because ISE provides of readable XDLRC (Xilinx Design Language Routing Configurable
logic) and XDL (Xilinx Design language) files [22]. Note that the XDLRC file is a hardware
structure file, and the XDL file is the netlist file provided by ISE. Based on XDLRC, the
previous FPGA reverse-engineering techniques [10–14] identify the association between
XDL and bitstream. The association is converted into a database that is used for reverse
engineering. All hardware elements in the FPGA described in XDLRC appear in the
bitstream, and the value is 1 in the bitstream only for the hardware elements used in
XDL. The database is generated by modifying the XDL files that applying information
on XDLRC and comparing bitstreams. Therefore, XDL and XDLRC files are essential for
securing a database for reverse engineering. Although some reverse-engineering techniques
using Vivado have been announced [15–21], the techniques are very limited and still at a
rudimentary level. The reason the latest FPGA reverse-engineering techniques in Vivado
are restricted and disturbed is the absence of textual netlist files such as XDLRC and
XDL. Consequently, this paper proposes a method to generate XDLRC and XDL files in
Vivado, similar to those in ISE, to extend the coverage of the previous reverse-engineering
techniques. It is important to note that this paper does not encourage bitstream attacks
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through reverse engineering but rather highlights the risk associated with malicious attacks
and emphasizes the importance of security. The remaining sections of this paper are
organized as follows: Section 2 explains the structure of Xilinx FPGAs and the design flow
of ISE and Vivado. In Section 3, we verify XDL and XDLRC files generated using ISE
and propose a method to generate them using Vivado. Section 4 analyzes the differences
between the files generated by the two EDA tools. Finally, Section 5 presents the conclusions
of this paper.

2. Background

In Xilinx FPGA devices, the XDLRC file represents a textual description of all available
hardware resources within the FPGA device, while the XDL file specifically details the
activated resources among the entire hardware [22]. To properly comprehend XDLRC and
XDL files, it is fundamental to grasp the fundamental structure of Xilinx FPGA devices. In
this chapter, we provide a comprehensive overview of the inherent hierarchical structure of
Xilinx FPGA architectures. Following that, we outline the sequential procedures for circuit
synthesis, implementation, and bitstream generation using both the ISE and Vivado.

2.1. Structure of Xilinx FPGA

Xilinx FPGAs feature a hierarchical structure for their hardware resources, which
can be simplified as depicted in Figure 2 [23–30]. The interior of the FPGA is composed
of tiles. The positions of these tiles are defined using Cartesian coordinates (X, Y). The
interconnections between tiles are fixed, and these static connections within the FPGA
are referred to as conn. The input and output ports of the tiles are defined as wires, and
the internal connections between wires are denoted as PIPs (Programmable Interconnect
Points). Each wire can be connected to one or more PIPs, with the appropriate PIPs selected
depending on the circuit implementation.
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Within each tile, there is a sub-level block known as a site. The input and output ports
of the site are defined as pin, and the connections between pins are also represented as conn.
Inside the site, there is another sub-level block called an element. Like the site, the input and
output ports of the element are composed of pins. Elements can either include or exclude
a configurable logical option referred to as cfg. Among elements that include cfg, those
responsible for constructing logic elements such as MUXs (Multiplexers) are called PLPs
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(Programmable Logic Points), while those supporting data storage functions like LUTs
(Look-Up Tables) are termed PDPs (Programmable Data Points).

2.2. ISE Design Flow

The design flow in ISE, from circuit synthesis to implementation, is depicted in Figure 3.
As shown in Figure 3, the ISE design flow comprises a total of five stages, each executed
using Tcl commands. The process begins with synthesis, which requires HDL source
files, including the design, and a UCF (User Constraint File) file specifying constraints.
Once these two files are prepared, synthesis is initiated using the ‘xst’ command. After
synthesis, an NGC (Native Generic Constraint) file is generated, combining the design
and constraints.
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Following that, the ‘ngdbuild’ stage is executed, which assigns the information de-
scribed in the NGC file to the physical resources of the FPGA, generating the NGD (Native
Generic Database) file, which includes routing and timing details in the form of a netlist.
After this, during the ‘map’ stage, the physical resources outlined in the NGD file are
mapped to real hardware components such as LUTs, MUXs, and BRAMs (Block RAMs).
Finally, when the ‘par’ stage, responsible for P&R (Placement and Routing), is executed,
it results in the generation of the netlist files, the NCD (Native Circuit Description) file,
and the XDL file. While netlist files such as NGC and NGD, including the NCD file, are
all in a binary format, the XDL file is in textual format, making it user-readable. Once the
P&R process is completed, the netlist files can be transformed into a BIT file, which can be
programmed onto the FPGA, via the ‘bitgen’ stage. It is noteworthy that, within the ISE, the
XDLRC file, describing all available hardware resources within the FPGA, can be generated
at any stage of the design flow after project creation.

2.3. Vivado Design Flow

Vivado, on the other hand, follows a design flow consisting of a total of seven stages,
as depicted in Figure 4. In the Vivado design flow, it is essential to have both the HDL
source, comprising the design, and the XDC file, detailing the constraints. Once these
two files are prepared, circuit synthesis is performed using the ‘synth_design’ command.
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After synthesis, the implementation proceeds through five stages. As the initial step of
implementation, ‘opt_design’ is performed to optimize the synthesis results, followed by
‘power_opt_design’ to further optimize from a power perspective.
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Following that, ‘place_design’ is responsible for positioning the optimized design onto
the FPGA hardware resources, while ‘phys_opt_design’ focuses on optimization with regard
to physical placement. Afterward, ‘route_design’ manages routing, and the ‘write_bitstream’
stage generates the BIT file that can be programmed onto the FPGA. It is important to
note that no netlist files, including XDL files, are generated during the synthesis and
implementation stages in Vivado design flow, and XDLRC files are also not provided.

3. Netlist File Generation

The XDLRC is essential for understanding the hardware structure, and the XDL shows
that the hardware elements appear in the bitstream as a readable netlist. These two files are
extracted from ISE with a single Tcl command in ISE, but in Vivado, they are extracted with
multiple Vivado Tcl commands. This section describes how to extract XDLRC and XDL
files from ISE and Vivado.

3.1. XDLRC File Generated by ISE

An XDLRC file can be generated using a Tcl command in ISE, and the Tcl command to
create an XDLRC file is as follows:

xdl -report [-pips] [-all_conns] <part> [<outfile name>]

The options [-pips] and [-all_conns] are used with the ‘xdl -report’ command. [-pips]
generates a report containing pip routing information, while [-all_conns] displays all con-
nections to a tile wire, regardless of the containing adjacent tile. The <part> parameter
represents the FPGA device, and it should include the speed grade and package details.
[<outfile name>] is an optional parameter; if not specified, the XDLRC file will be created
with a default name following the pattern ‘<part>.xdlrc’.
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As an example in this paper, the Artix-7 100t device, with a speed grade of −1 and
324 external I/O pads in the csg324 package, is used. If you want to generate an XDLRC
file to list the tiles and sites included for this device, ‘xdl -report xc7a100t-1csg324’ should
be executed to generate the XDLRC file. However, if you wish to obtain comprehensive
information, including all pips, wires, and conns for the same device, ‘xdl-report -pips
-all_conns xc7a100t-1csg324’ should be executed to generate the XDLRC file. Figure 5
provides an example of an XDLRC file generated using the options [-pips] and [-all_conns].
The XDLRC file, as seen in Figure 5, consists of three parts: the tile resource part, the
primitive_defs part, and the summary part.
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The Tile resource part represents all of the FPGA hardware resources at the tile level,
starting from the tile at position (0, 0) and describing each tile position, tile name, and
tile type. In Figure 5, line 7 begins to depict the internal structure of the tile located at
(1, 10). The numbers 1 and 10 represent the X and Y coordinates of the tile, respectively.
The subsequent CLBLL_L_X2Y199 indicates the tile name, with CLBLL_L denoting the
tile type. The number, 2, signifies the number of sites contained within this tile. Line 8
provides information about the sites configured within the tile. The sites are declared as
primitive_site. The SLICE_X1Y199 indicates the site name, SLICEL represents the site type,
and internal 45 specifies that the site contains 45 pins. Lines 9 and 10 detail the site pins
and wires. In the tile resource part, the internal structure of the tile is described by only
the site pins. Following primitive_site, the wires associated with the tile are listed. At a
lower level of wire, the conn describes how each wire is linked, specifying which tile wire it
connects to. Therefore, through lines 12 and 13, we can discern that the CLBLL_CLK0 wire
is connected to the CLK_L0 wire of INT_L_X2Y199 via the conn. The last line representing
the tile includes the tile name, type, the number of pinwires, wires, and pips present in
the tile.

In the primitive_defs part, the complete internal structures of all sites included in
this device are shown. Line 19 marks the beginning of revealing the internal structure of
the SLICEL site, with the numbers 45 and 140 following SLICEL signifying the respective
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counts of input/output pins and elements within the site. Each pin in the section describes
the pin name, the associated pinwire name from the tile resource part, and whether the pin
functions as an input or output represented in line 21 and line 22. The details of the elements
appear, as seen in line 23, where the element name and a number denoting the number of
pins within the element are provided. If there is a configuration present representing cfg in
Figure 6, all configurations of the element are listed, like line 25. The conn of the elements
represent the connections between pins of the elements. For instance, line 26 signifies the
connection between the OUT pin of the D5FFMUX element and the D pin of the D5FF
element. When the line beginning with the element name in the primitive_defs part is
suffixed with # BEL, it indicates that this element serves as a basic element as representing
bel in Figure 6, such as an LUT or an FF(Flip-Flop).
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In the summary part, details regarding the number of tiles, sites, site types, site
input/output pin counts, and the number of PIPs encompassed by this device are presented.

3.2. XDLRC File Generated by Vivado

In Vivado, there is no Tcl command like ‘xdl-report’ to generate an XDLRC file. How-
ever, through Vivado Tcl commands supported by Vivado, it is possible to obtain informa-
tion about FPGA hardware resources and create an XDLRC file.

To construct the tile resource part of the XDLRC file, information about tile names, tile
types, sites within the tile, wires and conns contained within the tile, and pips are required.
To access this information, commands such as ‘get_tiles’, ‘get_sites’, ‘get_wires’, and ‘get_pips’
are demanded. These commands alone provide only the names of each component.
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Identifying tile types and site types corresponds to particular attributes referred to as
TILE_TYPE and SITE_TYPE. To access these properties, the ‘get_property’ command should
be employed. It is important to note that extracting information about fixed connections
conn with Tcl commands in Vivado is not feasible.

The primitive_defs part, which describes the internal structure of each site type, re-
quires information about the pins within the site, the cfg of elements, conn, and whether
an element is a bel. Information regarding the pins within a site can be obtained through
the use of the ‘get_site_pins’ command. The configuration of an element, which repre-
sents the programmable points within the site, can be obtained using the ‘get_site_pips’
command. Elements that are bels can be distinguished using ‘get_bels’. However, it is
important to note that extracting conn, similar to the tile resource part, is not feasible
through available commands.

Figure 6 illustrates the process of generating an XDLRC file in Vivado as a flowchart.
To create the tile resource part, the process of extracting the required information for each
tile is repeated for all tiles. For the primitive_defs part, the process of discovering internal
site details is repeated for each site type. The summary part determines the count of each
component using the Tcl command ‘llength’. Through these steps, the XDLRC file was
created in Vivado, as shown in Figure 7.
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3.3. XDL File Generated by ISE

The TCL command for creating an XDL file using ISE is as follows:

xdl -ncd2xdl [-nopips] <ncdfile name> [<xdlfile name>]

[-nopips] is an option for the ‘xdl-ncd2xdl’ command that suppresses the reporting of PIPs,
and <ncdfile name> is the name of the netlist file generated after performing P&R, typically
matching the top module name. [<xdlfile name>] is an optional parameter to specify the
output file name. If the output file name is not specified, an XDL file with the same name
as the NCD file is generated. For instance, if the top module name is ‘TestDesign’ and you
want to generate an XDL file for this module with the name ‘TestDesign_v1.xdl’, the Tcl
command should be written as follows: ‘xdl -ncdtoxdl TestDesign.ncd TestDesign_v1.xdl’. An
example of an XDL file generated using the ‘xdl-ncd2xdl’ command in ISE is illustrated in
Figure 8 and is structured in four parts: the design part, the instance part, the net part, and
the summary part. In the design part, information such as the design name, device type,
and the version of ISE are presented.

The instance part displays hardware resources used in the design implementation at
the cell. A cell can be either a primitive or a hierarchical instance within a netlist. Examples
of cells include FFs, LUTs, I/O buffers, and hierarchical instances. The first line representing
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information about a single cell, as seen in line 11 of Figure 8, and includes the cell name,
the site type and site name where the cell is implemented, and the name of the tile where it
is located. Following the keyword cfg on the next line are all PLPs contained within the
site, used for the circuit implementation, listed along with their respective configurations.
Unused PLPs are marked with #OFF in the configuration string, while PDPs display data
stored as Boolean functions.
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The net part encompasses all the necessary nets for circuit implementation. Most of
these nets, as seen in the green lines of Figure 9, represent a collection of all the PIPs required
to connect an outpin from site A to an inpin in site C. In this context, the connections along
this path, conn, are not explicitly detailed in the net part since their routing is predetermined.
Therefore, when these nets are represented in XDL, each green line is described with one
outpin, one inpin, and three PIPs. For instance, let us consider the O_OBUF net from
Figure 8 when examining Figure 9. In this case, pin A in line 31 of Figure 8 corresponds to
the outpin of site A in Figure 9, and pin O in line 32 of Figure 8 corresponds to the inpin of
site C in Figure 9. These two pins are interconnected by the five PIPs detailed from line 33
to line 37 in Figure 8. However, nets connected to input and output pads, as illustrated in
line 28 and line 29 of Figure 8, provide information solely about the pads themselves.

3.4. XDL File Generated by Vivado

To generate an XDL file in Vivado, several Vivado Tcl commands that allow obtaining
the necessary information, like with XDLRC, should be used. To obtain the necessary
information for the design part in Vivado, the following commands are required: ‘find_top’
for retrieving the top design name, ‘get_parts’ for obtaining the FPGA device name, and
version to fetch the tool version. For the instance part, the cell names can be identified using
the ‘get_cells’ command. Information about the site type, site name, and tile name containing
the cell can be acquired, similar to XDLRC, by utilizing the ‘get_property’, ‘get_sites’, and



Electronics 2024, 13, 1100 10 of 16

‘get_tiles’ commands. The ‘get_site_pips’ command should be used to obtain information
about the PLPs within a site, ensuring the inclusion of the ‘-filter {IS_USED}’ option to focus
on the activated logic necessary for circuit implementation. The data stored in PDP can be
revealed in hexadecimal format using the ‘get_property’ INIT command.
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Figure 9. Example of a net.

The information needed for the net part can be acquired using the following com-
mands: ‘get_nets’ for net names, ‘get_pins’ for pins, and ‘get_pips’ for PIPs. When obtaining
information about pins and PIPs, like with PLP, it is essential to include the ‘-filter {IS_USED}’
option to extract only the active pins and PIPs, similar to in the instance part.

Figure 10 represents the flowchart of the XDL file generation process in Vivado. It
involves obtaining information about the design part, followed by iterating through the
process of obtaining all the information about cells and nets required for the instance part
and the net part. Through this process, the XDL file generated in Vivado appears, as shown
in Figure 11.
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4. Analysis

In this paper, experiments were conducted using the Artix-7 100T device with a speed
grade of −1 and the csg324 package. ISE version 14.7 and Vivado version 2020.2 were
employed for the generation of both XDL and XDLRC files.

4.1. Comparison of XDLRC

If you create XDLRC with two EDA tools for the same FPGA, as shown in Figure 12,
Figure 12a shows the XDLRC file generated by ISE, and Figure 12b shows part of the
XDLRC file generated by Vivado. The components shown highlighted in blue in Figure 12
mean that they appear exactly the same in both files. In the tile resource part, the tile
name, the tile type, the site type that constitutes the tile, the wire of the tile, and the PIP
inside the tile are the same. In the primary_defs part, the site type, the site pin, and
the elements including PLP or PDP inside the site are the same. On the other hand, in
Figure 12, the component highlighted in red, the conn of the element, and the pin of the
element can be checked in the XDLRC file generated by ISE with fixed connections, but
not in the XDLRC file generated by Vivado, which only shows information related to
programmable points. For example, it was figured out that the LIOI3_SING_X0Y199 tile
contains one primitive_site, OLOGIC_X0Y199, with three inputs, including CLK, D2, and
D1 and two wires and three PIPs through Figure 12a,b, while three conns of the wire
IOI_CLK1_0 and one conn of the wire LIOI_T0 are only seen in XDLRC extracted from ISE,
as shown in Figure 12a. The components contained in the primitive_site OLOGIC_X0Y199
appear the same in Figure 12a,b except for conn and pin of the element.

For most tiles, the basic structure appears the same in the XDLRC files generated by
both EDA tools, as shown in Figure 12. However, sites that do not contain PLP or PDP
cannot be verified in the XDLRC file generated by Vivado. In addition, if the connection
between start wire and end wire is determined to be only one of the PIPs, the PIPs cannot
also be confirmed in the XDLRC generated by Vivado because the connection operates as
fixed. In summary, only when programmable points among the components are identified
in the XDLRC file generated by ISE can the XDLRC generated by Vivado be verified.
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# =======================================================

(xdl_resource_report v0.2 xc7a100tcsg324-3 artix7

# *********************************************************

# * Tile Resources                                        *

# *********************************************************

(tiles 209 148

   (tile 1 1 LIOI3_SING_X0Y199 LIOI3_SING 3

        (primitive_site OLOGIC_X0Y199 OLOGICE3 internal 33

            (pinwire CLK input IOI_OLOGIC0_CLK)

            (pinwire D2 input IOI_OLOGIC0_D2)

            (pinwire D1 input IOI_OLOGIC0_D1)

         )

        (wire IOI_CLK1_0 3

            (conn L_TERM_INT_X2Y207 TERM_INT_CLK1)

            (conn IO_INT_INTERFACE_L_X0Y199 INT_INTERFACE_CLK1)

            (conn INT_L_X0Y199 CLK_L1)

        )

        (wire LIOI_T0 1
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        )
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    )

)

(primitive_defs 86

(primitive_def OLOGICE3 33 70

(pin D2 D2 input)

(pin D1 D1 input)

(pin OQ OQ output)

(element OQUSED 2

(pin OUT output)

(pin 0 input)

(cfg 0)

(conn OQUSED OUT ==> OQ OQ)

(conn OQUSED 0 <== OMUX OUT)

)   

) 

)

# *********************************************************

# * Summary                                               *

# *********************************************************

(summary tiles=30932 sites=28963 sitedefs=86 numpins=1003381 numpips=40375035)

: Same in ISE & Vivado : Only ISE  
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4.2. Comparison of XDL

To generate XDL files, an RTL design is essential. In this paper, a design instantiated
with one six-input LUT primitive, as shown in Figure 13, is used as an example design to
generate XDL files. The six-input LUT primitive, which employs six inputs and one output
and utilizes a single LUT, is configured with an INIT value of 64’h0000_0000_0000_0001.
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The XDL files generated by the two EDA tools are compared in Figure 14. In the
comparison, information that is identical in both files is highlighted in blue, and information
unique to ISE is emphasized in red. Additionally, the content highlighted in yellow
represents information present in both files but with differing names.
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# =======================================================             

# design <design_name> <part> <ncd version>;      

# =======================================================

design "lut_6input_0" xc7a100tcsg324-1 v3.2 ,

  cfg "

       _DESIGN_PROP:P3_PLACE_OPTIONS:EFFORT_LEVEL:high

       _DESIGN_PROP::PK_NGMTIMESTAMP:1618248090";

#  =======================================================

#      instance <name> <sitedef>, placed <tile> <site>, cfg <string> ;
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#       ;

#  ================================================

net "I5_IBUF" , 

  outpin "I5" I ,

  inpin "O_OBUF" A5 ,

  pip CLBLL_L_X2Y145 CLBLL_IMUX8 -> CLBLL_LL_A5 , 

  pip INT_L_X0Y143 LOGIC_OUTS_L18 -> EE2BEG0 , 
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  ;

# =======================================================

# SUMMARY

# Number of Module Defs: 0

# Number of Module Insts: 0

# Number of Primitive Insts: 8

# Number of Nets: 14
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Design part

Instance part

Net part

Summary part

 1:

 2:

 3:

 4:

 5:

 6:

 7:

 8:

 9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

43:

44:

45:

46:

47:

48:

49:

50:

51:

52:

53:

54:

55:

56:

57:

: Same in ISE & Vivado: Different by P&R algorithm : Only ISE  
(a) XDL files generated by ISE 

# =======================================================             

# design <design_name> <part> <ncd version>;      

# =======================================================

design "lut_6input_0" xc7a100tcsg324-1 Vivado v2021.2 ,

#  =======================================================

#      instance <name> <sitedef>, placed <tile> <site>, cfg <string> ;

#  =======================================================

inst "LUT6_inst" "SLICEL" placed CLBLL_L_X2Y145   SLICE_X0Y145

cfg "SLICE_X0Y145/AUSED:0 INIT:64'h0000000000000001"

;

#  ================================================

#     net <name> <type>,

#       pin <inst_name> <inst_pin>,

#       pip <tile> <wire0> <dir> <wire1> ,

#       ;

#  ================================================

net "I5_IBUF"

pin LUT6_inst/I5

pin I5_IBUF_inst/O

pip LIOI3_TBYTESRC_X0Y143/LIOI3_TBYTESRC.LIOI_IBUF1->LIOI_I1

pip LIOI3_TBYTESRC_X0Y143/LIOI3_TBYTESRC.LIOI_I1->LIOI_ILOGIC1_D

pip LIOI3_TBYTESRC_X0Y143/LIOI3_TBYTESRC.LIOI_ILOGIC1_D->>IOI_ILOGIC1_O
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pip INT_L_X0Y143/INT_L.LOGIC_OUTS_L18->>NN2BEG0

pip INT_L_X0Y145/INT_L.NN2END0->>EL1BEG_N3

pip INT_R_X1Y144/INT_R.EL1END3->>ER1BEG_S0

pip INT_L_X2Y145/INT_L.ER1END0->>IMUX_L2

pip CLBLL_L_X2Y145/CLBLL_L.CLBLL_IMUX2->CLBLL_LL_A2

;

net "O"

pin O_OBUF_inst/O

;

net "O_OBUF"

pin O_OBUF_inst/I

pin LUT6_inst/O

pip CLBLL_L_X2Y145/CLBLL_L.CLBLL_LL_A->CLBLL_LOGIC_OUTS12

pip INT_L_X2Y145/INT_L.LOGIC_OUTS_L12->>NW6BEG0

pip LIOI3_SING_X0Y149/LIOI3_SING.IOI_IMUX34_0->IOI_OLOGIC0_D1

pip LIOI3_SING_X0Y149/LIOI3_SING.IOI_OLOGIC0_D1->>LIOI_OLOGIC0_OQ
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In the XDL file generated by ISE, the PLP and PDP used in the SLICE_X0Y145 site of
CLBLL_L_X2Y145 tile, implementing the O_OBUF logic, are identical. Note that, in the
case of PDP, it is all expressed as a Boolean function in ISE, but in Vivado, it is expressed as
hexadecimal. However, dummy cells that do not use logic are confirmed in XDL generated
by ISE by adding the keyword DUMMY in line 18 to line 20 of Figure 14a, but not in XDL
generated by Vivado because logic is not used. For the net part, the two files are identified
as the same number of nets and the same name. However, some pins for the input/output
of the net, such as the A5 pin in line 30 of XDL generated by ISE, as shown in Figure 14a,
are represented differently in the XDL file produced by Vivado, appearing as I5 in the line
18 of Figure 14b. Regarding the PIPs, which consist of the net, while the PIPs connected to
input and output pins are the same in both files, as shown in Figure 14a,b, some PIPs that
constitute the internal connection of the net differ due to variations in the P&R algorithms
of the ISE and Vivado. For example, the I5_IBUF net represents the net for the I5 input of
the six inputs in Figure 11, from the IOI (Input/Output Interface) tile where I5 is connected
to the CLB tile where the six-input LUT is implemented. The IOI tile and the CLB tile
are not connected directly but through an interconnect tile, the INT tile. As shown in the
two files in Figure 14, the wires where the I5_IBUF net starts are the same as the LIOI_IBUF1
wire in the ILIOI3_TBYTESRC_X0Y143 tile. However, the net ends at tile CLBLL_L_X2Y145,
but the wires are different: CLBLL_LL_A5 in Figure 14a and CLBLL_LL_A2 in Figure 14b. In
other words, the input pins of a six-input LUT described as I5 in the HDL are connected
differently to the input wires of the CLB where the LUT is implemented, even though
they are placed in the same IOI tile in ISE and Vivado. In addition, some of the PIPs from
the LIOI_IBUF1 wire to the destination wire are different due to the different termination
points. The reason for the different connections is due to the different routing algorithms
mentioned earlier, which only affect the configuration of the network.

In summary, while there are differences in dummy cells and PIPs due to variations
from the P&R algorithms, both XDL files generated by ISE and Vivado present all the
necessary information for logic implementation in an identical manner. Consequently, the
circuits represented in both XDL files are logically perfect and the same.

5. Conclusions

In this paper, a method for generating textual netlists in both ISE and Vivado is
proposed. When comparing XDL and XDLRC files generated from ISE and Vivado using
the proposed method, it is found that XDLRC files match by 99% for programmable points
such as PLP, PIP, and PDP. In the case of XDL files, there is approximately a 75% match
between files generated by the two EDA tools. The remaining 25% mismatch is attributed
to differences in dummy cells and routing algorithms. However, these differences in XDL
files do not impact the functionality of the circuit when using each respective XDL file for
circuit reconfiguration.

This paper demonstrates that through the proposed method, textual netlists generated
from Vivado contain the same programmable point information as those from ISE. It is
possible to extend the application scope of the previous reverse-engineering tools to cover
devices supported by Vivado, as essential textual netlists can be obtained from both ISE and
Vivado. This indicates that the scope of previous reverse-engineering techniques can be
extended. Therefore, we believe that the XDLRC and XDL files generated by the proposed
method can be used to develop reverse-engineering techniques for FPGAs supported by ISE
and Vivado simultaneously. It is also expected that a basis will be provided for developing
reverse-engineering techniques for FPGAs supported only by Vivado.

Finally, this paper does not encourage malicious bitstream attacks through reverse
engineering but rather highlights the risk associated with malicious attacks and emphasizes
the importance of security measures. In addition, in terms of reverse engineering the design
implemented in the FPGA, it can help researchers understand the feasibility of such attacks
from the white hacker side and develop countermeasures against such methods.
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